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Current and photon confinement
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Current and photon confinement

Edge-emitting ridge laser
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Current and photon confinement

Photon confinement

Index contrast confines
mode in transverse and
lateral direction
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Current and photon confinement

Surface-emitting
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Current and photon confinement

Single quantum well separate
confinement heterostructure
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Quantum well laser
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quantum wells
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Quantum well(s) can only very 
weakly confine a mode.
Usually, quantum wells are 
sandwiched inside another higher 
bandgap material that can be 
engineered to improve mode 
guiding and electron injection into 
the quantum well(s). This type of 
structure is called a separate 
confinement heterostructure (SCH).
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Gain in quantum well
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Peak gain occurs at the bandedge

Assuming only subband is filled in 
conduction and valence bands we can write 
an approximate expression for the peak gain
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Recall,

The Fermi functions can be written in terms of the carrier density

Then,  m 1 exp( ) exp( )p vcg g n n p n= − − − −
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Gain in quantum well

 m 1 exp( ) exp( )p vcg g n n p n= − − − −

The plot of peak gain vs. carrier 
concentration (red line) is approx. linear on 
a semi-log plot, therefore a simpler
approximate expression is often used
(dashed gray curve).

0 0ln[ / ]pg g n n=

As discussed previously, the current density can be written in terms of a 
polynomial of the carrier density (e.g.  𝐽 ∝ 𝑛2 if spontaneous emission 
dominates). Therefore, we can write a similar approximate
expression for peak gain in terms of carrier density.

0 0ln[ / ]pg g J J= Note: g0 are not the same in both expressions
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Quantum well laser - threshold gain
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Threshold current and gain in active region 
with multiple quantum wells
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Active region optimization
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Optimize cavity length (L) or a fixed number of quantum wells

Optimize number of quantum wells (nw) for a fixed cavity length
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Additional details on the “ABC” approximation
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The ABC approximation is widely used to estimate recombination
rates in LEDs and lasers (at or below threshold). Although strictly speaking, it is 
valid only when Boltzmann statistics are valid so some care needs to be 
applied when using the approximation.

We have already proved that the spontaneous emission rate has an
n2 dependence (when Boltzmann statistics apply). See the previous lecture
on spontaneous emission.

Let’s look at the Shockley-Reed-Hall and Auger rates. 

“ABC” approximation

Recombination rate in LED or Laser at or below threshold:
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Shockley-Reed-Hall recombination
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The derivation of the SRH rate is found
in many basic semiconductor textbooks.
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dsn dspand are the electron and 
hole concentrations when the Fermi 
level is at the defect state energy

We see that in general we cannot write 

SRHR An=

But, we can do so if we restrict
our analysis to a “low-injection” or
“high-injection” regime.

Capture rates
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dsN : defect density
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Low-injection and high-injection regime
Active region materials have a background doping due to unintentional doping
impurities introduced during growth. Let’s assume our active region is 
unintentionally doped p-type.
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We see that we can write                      so long we stay in one of the two regimes.
If the electron capture is the rate-limiting step (for p-type material), then the A 
coefficient will be identical in both regimes.

SRHR An=
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Auger recombination

Electron recombines with hole and gives up excess energy to another carrier 
instead of releasing a photon. Several different Auger processes are possible 
(as shown below). Often there is a material-dependent dominant process.
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Auger recombination

The CCCH Auger rate is given by
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Very likely that State 4 is empty
since it is well beyond the bandedge
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Auger recombination
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Energy and momentum conservation
needs to be simultaneously conserved.
This sets a threshold value for E4 which
we call ET. Materials with small ET will
have large Auger rates since 

exp( / )Auger TR E kT −

ET is related to the curvature of the bands
through
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the value of a is approximately unity for III-V 
semiconductors therefore,

exp( / )Auger gR E kT −

Auger recombination is higher in
low bandgap materials.


